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“Nothing in biology makes sense 
except in the light of evolution.”

Theodosius Dobzhansky



Contribution
of this paper

Evolution

= 

Multiplicative Weight Update Algorithm

applied to

Finding Nash equilibrium of a coordination game



Modelling Evolution

Theoretical Biology



How we
model
evolution

• Population of an infinite number of members

• Each member has a genotype consisting of two 

genes

• Two possible alleles per gene

• (Generalisation to an arbitrary number of genes 

with arbitrarily many alleles is not difficult)
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How we
model
evolution

• fitness value of genotypes
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How we model evolution

initial 
population

A1 B1

A2 B2

A2 B1

A2 B1

𝒘𝒊𝒋 B1 B2

A1 1 3

A2 2 1

cloning

A2 B2

A2 B1

random mating and 
recombination

A1 B1 A2 B1

A1 B1 A2 B1or

new
population

reproduce asexually
(probability 1-r)

A2 B2

A2 B1

reproduce sexually
(probability r)

A1 B1

A2 B1

offsprings

A2 B2

A2 B1

A1 B1

A2 B1

clones (according to
fitness)

A2 B2

A2 B1

A1 B1

A2 B1

A2 B1

A2 B1



How we model evolution

𝑝𝑖𝑗
𝑡+1 =

𝑤𝑖𝑗

𝑍𝑡
( 1 − 𝑟 𝑝𝑖𝑗

𝑡 + 𝑟 𝑝𝑖1
𝑡 + 𝑝𝑖2

𝑡 𝑝1𝑗
𝑡 + 𝑝2𝑗

𝑡 )

frequency of
genotype Ai-Bj at 
time t+1
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How we model evolution

𝑝𝑖𝑗
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asexual 
reproduction

frequency of
genotype Ai-Bj at 
time t

sexual reproduction by
recombination



How we model evolution
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probability of asexual or sexual reproduction
leading to the genotype Ai-Bj
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leading to the genotype Ai-Bj



How we model evolution

𝑝𝑖𝑗
𝑡+1 =

𝑤𝑖𝑗

𝑍𝑡
( 1 − 𝑟 𝑝𝑖𝑗

𝑡 + 𝑟 𝑝𝑖1
𝑡 + 𝑝𝑖2

𝑡 𝑝1𝑗
𝑡 + 𝑝2𝑗

𝑡 )

fitness of genotype Ai-Bj
(«number of clones of each offspring with this genotype»)

Expected number of offsprings with the
genotype Ai-Bj



How we model evolution

𝑝𝑖𝑗
𝑡+1 =

𝑤𝑖𝑗

𝑍𝑡
( 1 − 𝑟 𝑝𝑖𝑗

𝑡 + 𝑟 𝑝𝑖1
𝑡 + 𝑝𝑖2

𝑡 𝑝1𝑗
𝑡 + 𝑝2𝑗

𝑡 )

normalization
constant such that
all frequencies
sum up to 1



Evolution 
implements
MWUA

Evolution

= 

Multiplicative Weight Update Algorithm

applied to

Finding Nash equilibrium of a coordination game



Multiplicative Weight Update 
Algorithm

Computer Science



MWUA
• Simple and general algorithm used in many

different areas:

• Machine Learning (e.g. AdaBoost)

• Approximations for NP-hard problems

• Solving linear programs

• Finding Nash equilibria for some types of games



MWUA and Coordination Games

Game Theory



Coordination
Games

• Two players A and B play a game

• Reward for player A = reward for player B 

→ They strive to reach the same goal!

Two friends decided to go to a concert together, but they both forgot if they had agreed to

see The Chainsmokers or Adele. They can’t communicate until they reach the location.

The Chainsmokers Adele

The Chainsmokers 2 / 2 0 / 0

Adele 0 / 0 1 / 1



Coordination Games

• How to find the perfect action? (knowing all rewards)

• (Besides the obvious way…)

• They can use the multiplicative weight update algorithm (MWUA)

Two friends decided to go to a concert together, but they both forgot if they had agreed to

go to see The Chainsmokers or Adele. They can’t communicate until they reach the

location. The Chainsmokers Adele

The Chainsmokers 2 / 2 0 / 0

Adele 0 / 0 1 / 1



MWUA for games
Given reward function r   → find the optimal strategies pA and pB

• We start with any strategies pA
0 and pB

0 

• Apply iteratively:

𝑝𝐴
𝑡+1 𝑖 =

1

𝑍𝑡
𝑝𝐴
𝑡 (𝑖)(1 + 𝜖 ⋅ 𝔼𝑗~𝑝𝐵

𝑡 𝑟 𝑖, 𝑗 𝑖 )

probability of player A playing

action i following the strategy pA
t+1
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MWUA for games
Given reward function r   → find the optimal strategies pA and pB

• We start with any strategies pA
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MWUA for games
Given reward function r   → find the optimal strategies pA and pB

• We start with any strategies pA
0 and pB

0 

• Apply iteratively:

𝑝𝐴
𝑡+1 𝑖 =
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𝑡 𝑟 𝑖, 𝑗 𝑖 )

expected reward if player A plays action i

and player B follows the strategy pB
t



MWUA for games
Given reward function r   → find the optimal strategies pA and pB

• We start with any strategies pA
0 and pB

0 

• Apply iteratively:
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𝑡 𝑟 𝑖, 𝑗 𝑖 )

small positive «learning rate»



MWUA for games
Given reward function r   → find the optimal strategies pA and pB

• We start with any strategies pA
0 and pB

0 

• Apply iteratively:

𝑝𝐴
𝑡+1 𝑖 =

1

𝑍𝑡
𝑝𝐴
𝑡 (𝑖)(1 + 𝜖 ⋅ 𝔼𝑗~𝑝𝐵

𝑡 𝑟 𝑖, 𝑗 𝑖 )

normalization constant such that pA
t+1 is a 

probability distribution



MWUA for games

𝑝𝐴
𝑡+1 𝑖 =

1

𝑍𝑡
𝑝𝐴
𝑡 (𝑖)(1 + 𝜖 ⋅ 𝔼𝑗~𝑝𝐵

𝑡 𝑟 𝑖, 𝑗 𝑖 )

Theorem

𝑝𝐴
𝑡 and 𝑝𝐵

𝑡 converge to a nash equilibrium.



But why is this relevant for
evolution?



Evolution

𝑝𝑖𝑗
𝑡+1 =

𝑤𝑖𝑗

𝑍𝑡
( 1 − 𝑟 𝑝𝑖𝑗

𝑡 + 𝑟 𝑝𝑖1
𝑡 + 𝑝𝑖2

𝑡 𝑝1𝑗
𝑡 + 𝑝2𝑗

𝑡 )

MWUA for coordination games

𝑝𝐴
𝑡+1 𝑖 =

1

𝑍𝑡
𝑝𝐴
𝑡 (𝑖)(1 + 𝜖 ⋅ 𝔼𝑗~𝑝𝐵

𝑡 𝑟 𝑖, 𝑗 𝑖 )

Not quite there!



Modelling Evolution (again)

Theoretical Biology



Weak
Selection

∀𝑖, 𝑗. 𝑤𝑖𝑗 ∈ 1 − 𝑠, 1 + 𝑠

for a small selection strength 𝑠 > 0

⇒ 𝑤𝑖𝑗 = 1 + s ⋅ Δij, Δij ∈ −1, 1



Weak
Selection

𝑤𝑖𝑗 = 1 + s ⋅ Δij, Δij ∈ −1, 1

𝑝𝐴
𝑡+1 𝑖 ≈

1

𝑍𝑡
𝑝𝐴
𝑡 𝑖 (1 + 𝑠 ⋅ 𝔼𝑗∼𝑝𝐵

𝑡 [Δ𝑖𝑗|𝑖])

assumption of weak selection

allele frequencies

probability of allele i
at gene A at time t+1



Evolution

𝑝𝐴
𝑡+1 𝑖 ≈

1

𝑍𝑡
𝑝𝐴
𝑡 𝑖 (1 + 𝑠 ⋅ 𝔼𝑗∼𝑝𝐵

𝑡 [Δ𝑖𝑗|𝑖])

MWUA for coordination games

𝑝𝐴
𝑡+1 𝑖 =

1

𝑍𝑡
𝑝𝐴
𝑡 (𝑖)(1 + 𝜖 ⋅ 𝔼𝑗~𝑝𝐵

𝑡 𝑟 𝑖, 𝑗 𝑖 )

Looks similar?



𝑝𝐴
𝑡+1 𝑖 ≈

1

𝑍𝑡
𝑝𝐴
𝑡 𝑖 1 + 𝑠 ⋅ 𝔼𝑗∼𝑝𝐵

𝑡 Δ𝑖𝑗 𝑖

𝑝𝐴
𝑡+1 𝑖 =

1

𝑍𝑡
𝑝𝐴
𝑡 (𝑖)(1 + 𝜖 ⋅ 𝔼𝑗~𝑝𝐵

𝑡 𝑟 𝑖, 𝑗 𝑖 )

frequency of allele i at gene A at 
time t+1

probability of action i by player A
in iteration t+1

selection strength s

learning rate 𝝐

expected differential fitness of
genotypes with allele i at gene A at 
time t

expected reward upon action i by
player A at iteration t



Evolution 
implements
MWUA

• Evolution «implements» the MWU-algorithm

• Genes are the players

• The alleles are the actions

• The allele frequencies are the strategies

• The reward is the differential fitness



What we
learned

• Evolution under weak selection has the same 

behavior as the MWUA for coordination games

• Until convergence, there is a trade-off between

fitness and diversity

•Link between Theoretical

Biology, Game Theory, 

Theoretical Computer Science, 

and Information Theory!



Thank you for your attention!



Source of Diversity

Information Theory



𝑝𝑖𝑗
𝑡+1 =

𝑤𝑖𝑗

𝑍𝑡
( 1 − 𝑟 𝑝𝑖𝑗

𝑡 + 𝑟 𝑝𝑖1
𝑡 + 𝑝𝑖2

𝑡 𝑝1𝑗
𝑡 + 𝑝2𝑗

𝑡 )

𝒘𝒊𝒋 B1 B2

A1 1.1 0.8

A2 0.5 1.0

0

0.2

0.4

0.6

0.8

1

A1-B1 A1-B2 A2-B1 A2-B2



There’s more!
• Weak selection maximizes the following quantity:

𝑥𝐴
𝑡 1 

𝜏=0

𝑡

𝔼𝑗∼𝑥𝐵
𝜏 [Δ1𝑗] + 𝑥𝐴

𝑡 2 

𝜏=0

𝑡

𝔼𝑗∼𝑥𝐵
𝜏 [Δ2𝑗] +

1

𝑠
𝐻(𝑥𝐴

𝑡)

cumulative expected differential fitness entropy of the allele distribution
(high entropy equals high uncertainty)



There’s more!
• Allele frequencies will eventually collapse

• Until collapse, allele distributions with high uncertainty are preferred

• This possibly explains the huge diversity in nature:

• Trade-off between fitness and diversity until convergence!



Weak
Selection

∀𝑖, 𝑗. 𝑤𝑖𝑗 ∈ 1 − 𝑠, 1 + 𝑠

for a small selection strength 𝑠 > 0

⇒ 𝑤𝑖𝑗 = 1 + s ⋅ Δij, Δij ∈ −1, 1

Theorem (Nagylaki)

Under weak selection, the frequency 𝑝𝑖𝑗
𝑡 of a genotype Ai-Bj can be approximated as a 

product of the marginal frequencies of the two alleles:

𝑝𝑖𝑗
𝑡 ≈ 𝑝𝑖1

𝑡 + 𝑝𝑖2
𝑡 ⋅ 𝑝1𝑗

𝑡 + 𝑝2𝑗
𝑡 = 𝑝𝐴

𝑡 (𝑖) ⋅ 𝑝𝐵
𝑡 (𝑗)

The error of this approximation is in 𝑂(𝑠).

probability of allele i
at gene A at time t



Weak Selection

𝑝𝑖𝑗
𝑡+1 =

𝑤𝑖𝑗

𝑍𝑡
1 − 𝑟 𝑝𝑖𝑗

𝑡 + 𝑟 𝑝𝑖1
𝑡 + 𝑝𝑖2

𝑡 𝑝1𝑗
𝑡 + 𝑝2𝑗

𝑡

≈
𝑤𝑖𝑗

𝑍𝑡
1 − 𝑟 ⋅ 𝑝𝐴

𝑡 𝑖 ⋅ 𝑝𝐵
𝑡 𝑗 + 𝑟 ⋅ 𝑝𝐴

𝑡 𝑖 ⋅ 𝑝𝐵
𝑡 𝑗

=
𝑤𝑖𝑗

𝑍𝑡
⋅ 𝑝𝐴

𝑡 𝑖 ⋅ 𝑝𝐵
𝑡 𝑗

=
1 + 𝑠 ⋅ Δ𝑖𝑗

𝑍𝑡
⋅ 𝑝𝐴

𝑡 (𝑖) ⋅ 𝑝𝐵
𝑡 (𝑗)

(Δ𝑖𝑗 ∈ [−1, 1] = differential fitness

of genotype Ai-Bj)

𝑤𝑖𝑗 ∈ 1 − 𝑠, 1 + 𝑠

𝑝𝑖𝑗
𝑡 ≈ 𝑝𝑖1

𝑡 + 𝑝𝑖2
𝑡 ⋅ 𝑝1𝑗

𝑡 + 𝑝2𝑗
𝑡 = 𝑝𝐴

𝑡 (𝑖) ⋅ 𝑝𝐵
𝑡 (𝑗)



Allele frequencies
𝑝𝐴
𝑡+1 𝑖 = 𝑝𝑖1

𝑡+1 + 𝑝𝑖2
𝑡+1

≈
1 + 𝑠 ⋅ Δ𝑖1

𝑍𝑡
⋅ 𝑝𝐴

𝑡 𝑖 ⋅ 𝑝𝐵
𝑡 1 +

1 + 𝑠 ⋅ Δ𝑖2
𝑍𝑡

⋅ 𝑝𝐴
𝑡 𝑖 ⋅ 𝑝𝐵

𝑡 2

=
1

𝑍𝑡
⋅ 𝑝𝐴

𝑡 𝑖 ⋅ (𝑝𝐵
𝑡 1 + 𝑝𝐵

𝑡 2 + 𝑠 ⋅ (Δ𝑖1𝑝𝐵
𝑡 1 + Δ𝑖2𝑝𝐵

𝑡 2 ))

=
1

𝑍𝑡
𝑝𝐴
𝑡 𝑖 (1 + 𝑠 ⋅ 𝔼𝑗∼𝑝𝐵

𝑡 [Δ𝑖𝑗|𝑖])
(𝔼𝑗∼𝑝𝐵

𝑡 Δ𝑖𝑗 𝑖 = expected 

differential fitness of a 
genotype with allele i for gene A 
at time t)

𝑝𝑖𝑗
𝑡+1 ≈

1 + 𝑠 ⋅ Δ𝑖𝑗

𝑍𝑡
⋅ 𝑥𝐴

𝑡 𝑖 ⋅ 𝑥𝐵
𝑡 𝑗



Weak
Selection 𝑤𝑖𝑗 ∈ 1 − 𝑠, 1 + 𝑠

𝑝𝑖𝑗
𝑡 ≈ 𝑝𝐴

𝑡 𝑖 ⋅ 𝑝𝐵
𝑡 𝑗

𝑝𝐴
𝑡+1 𝑖 ≈

1

𝑍𝑡
𝑝𝐴
𝑡 𝑖 (1 + 𝑠 ⋅ 𝔼𝑗∼𝑝𝐵

𝑡 [Δ𝑖𝑗|𝑖])

𝑝𝐵
𝑡+1 𝑗 ≈

1

𝑍𝑡
𝑝𝐵
𝑡 𝑗 (1 + 𝑠 ⋅ 𝔼𝑖∼𝑝𝐴

𝑡 [Δ𝑖𝑗|𝑗])

assumption of weak selection
Nagylaki’s theorem

allele frequencies


